科目シラバス 2025 年度

■科目基本情報

11 F + 1 117 1K					
科目名	データリテラシ	科目コード	A930		
授業時間/週	前期3,後期3 時間/週	年次	1年	学期	通年
必修/選択区分	必修	授業形態	講義		
担当教員	岡田 直己				
教員の実務経験	有:実務経験のある教員による授業科目	実務経験職種	システムエンジ	ニア	
企業等連携授業	該当しない	職業実践専門課程 の企業等連携科目			
連携企業等					

		カライブラ				
確率論・統計学に基づいたデータの要約・推測・予測の各手法を学ぶことで、「データ思考を涵剤		カライブラ				
		カライブラ				
	確率論・統計学に基づいたデータの要約・推測・予測の各手法を学ぶことで、「データ思考を涵養」する。Pythonのライブラリをはじめとした各種データ解析ツールを用いて、データの可視化や予測を行うことで、「手触り感」のある学習を行う。					
	記述統計の基本事項を理解している。推測統計の基本事項を理解している。統計モデル・機械学習モデルの基本事項を理解している。Pythonのライブラリをはじめとした各種データ解析ツールの活用方法を理解している。					
授業方法 講義、実習、発表、グループ学習、アクティブラーニング、レポート	講義、実習、発表、グループ学習、アクティブラーニング、レポート					
実務家教員による 実践的教育の内容 実践的教育の内容 新技術動向なども授業内で展開を行い学生興味を誘発する。	システム開発の実務経験のある教員が講義・演習・課題・成績評価までトータルで担当。実務経験を織り交ぜながら、最 新技術動向なども授業内で展開を行い学生興味を誘発する。					
*記試験 定期試験 0% *記試験 小テスト 0% 実技試験 0% 課題評価 70% 平常評価	80% 合計	100%				
Python・データ分析・機械学習に関して、課題提出物から習熟度、独自性、創意工夫を評価する) ₀					
授業外における学修 外部のコンペティションや講習会を都度紹介し、参加(任意)を促す。	外部のコンペティションや講習会を都度紹介し、参加(任意)を促す。					
教科書・教材 「データ分析に必須の知識・考え方 統計学入門」ソシム:ISBN-10 4802613199 Pythonによるあたらしいデータ分析の教科書 第2版 翔泳社:ISBN-10 4798176613						
参考文献・資料特になし	特になし					
履修上の留意点 特になし	特になし					
第 1 週 オリエンテーション 授業概要/到達目標/授業方法/成績評価/課題提出方法 第 2 週 NumPy入門 前 darray/データ型/要素とスライス/shapeとreshape 第 3 週 Matplotlib入門 FigureとAxes/オブジェクト指向スタイルとpyplotスタイル 第 4 週 SeriesとDataFrame/部分集合とquery/集計と集約/欠損処理 第 5 週 SeriesとDataFrame/部分集合とquery/集計と集約/欠損処理 第 5 週 SeriesとDataFrame/部分集合とquery/集計と集約/欠損処理 第 6 週 データ分析における統計学の役割 第 7 週 データ分析における統計学の役割 第 8 週 第2章 母集団と標本① データ分析の目的と対象を設定する 第 9 週 データ分析の目的と対象を設定する 第 10 週 第3章 統計分析の基礎① データの種類・統計量・確率 第 12 週 第3章 統計分析の基礎② データの種類・統計量・確率 第 12 週 第 5章 成説検定② データから母集団の性質を推測する 第 13 週 データから母集団の性質を推測する 第 14 週 仮説の検証とp値 第 15 週 仮説の検証とp値 第 15 週 仮説の検証とp値 第 16 週 核診し定② 第 15 週 仮説の検証とp値 第 16 週 後定から分数分析、カイ二乗検定まで 第 17 週 第6章 様々な仮説検定②	第 1 週 授業概要/到達目標/授業方法/成績評価/課題提出方法 第 2 週 NumPy入門 ndarray/データ型/要素とスライス/shapeとreshape 第 3 週 Matplotlib入門 FigureとAxex/オブジェクト指向スタイルとpyplotスタイル 第 4 週 pandas入門 SeriesとDataFrame/部分集合とquery/集計と集約/欠損処理 第 5 週 Figure-level関数とAxes-level関数 第 6 週 第 章					
第 17 週 は検定から分散分析、カイニ乗検定まで						

	第 18 调	第7章 回帰と相関①
	弗 10 週	2つの量的変数の関係を分析する
	## 10 °EI	第7章 回帰と相関②
	第 19 週	2つの量的変数の関係を分析する
	## 00 YE	第8章 統計エデリング①
	第 20 週	線形回帰から一般化線形モデル
	## 04 °⊞	第8章 統計モデリング②
	第 21 週	線形回帰から一般化線形モデル
	## 00 '⊞	第9章 仮説検定における注意点①
	第 22 週	再現可能性とp-hackin
	## 00 '⊞	第9章 仮説検定における注意点②
	第 23 週	再現可能性とp-hackin
	## 0.4 \F	第10章 因果と相関①
	第 24 週	誤った解釈をしないための考え方
	## 05 YE	第10章 因果と相関②
	第 25 週	誤った解釈をしないための考え方
+∞ ** =1 -	## 00 YE	第11章 ベイズ統計①
授業計画	第 26 週	柔軟な分析へ向けて
	第 27 週	第11章 ベイズ統計②
	弗 2/ 週	柔軟な分析へ向けて
	## 00 YE	第12章 統計分析に関わるその他の手法①
	第 28 週	主成分分析から機械学習まで
	## 00 '⊞	第12章 統計分析に関わるその他の手法②
	第 29 週	主成分分析から機械学習まで
	## 00 YE	第13章 モデル①
	第 30 週	統計モデル・機械学習モデル・数理モデル
	## 04 Y⊞	第13章 モデル②
	第 31 週	統計モデル・機械学習モデル・数理モデル
	## 00 YE	分析プロジェクト①
	第 32 週	データセットの選定、前処理、探索的データ分析
	## 00 YE	分析プロジェクト②
	第 33 週	データに対する統計解析や機械学習モデルの適用
	## 0.4 \T	分析プロジェクト③
	第 34 週	結果報告