2024年度 科目シラバス

■科目基本情報

4D 坐个 IT 我						
科目名	A I リテラシー	科目コード	A330			
授業時数/週	1 時間/週	年次・学期	1 年 ・ 通期			
必修/選択区分	必修	授業形態	講義			
担当教員	遠藤洋次,綱木久美子,松本清一,坪内貴政					
教員の実務経験	無	実務経験職種				
職業実践専門課程		連携企業等				
備考		•				

■科

	概未关以守门 际性	廷防正木守			
	備考				
<u>科</u>	目詳細情報				
	授業概要	画像認識を例にAI技術の基礎原理を理解するため、これまでのAI発展の歴史を学び、AIがどのように自己学習しているのかを学習する。また、最先端のAI技術活用状況について学習する。AI技術の活用方法の基礎を学習し、各自の課題制作で活かせるようにする。			
	到達目標	AI技術の概念と原理、特に基礎となる誤差逆伝搬法について理解し、説明できるようになる。また、社会においてどのようにAIが活用されているか理解し、そのいくつかについて活用できるようになる。			
	授業方法	講義を聴いた後、レポートにより習熟度の確認、例題・課題により動作確認を行う			
	実践的教育の内容				
	成績評価方法	筆記試験			
		 採題計画において、小アスト及び、提面されたレルートに授業で子首したことが週切に表現されているかによって 評価を行う。			
	授業外における学修	特になし			
	教科書・教材	「AI基礎原理とその仕組み」「AIを実際に実行してみる![顔画像認証による実践]」			
	参考文献・資料	特になし			
	履修上の留意点	特になし			
	授業計画	第1週オリエンテーション、人工知能(AI)の定義 AIの基礎原理、人工知能の定義、AIにまつわる専門用語第2週なぜAIが必要とされているか AIの活用事例			
		第3週 Scratchで機械学習(1)			
		第 4 週			
		第 5 週 ディープラーニングの実装解説 Scratchで機械学習 (3)			
		第6週 AIの得意なことと不得意なこと AIの4つのレベル,ビッグデータとIoT,第4次産業革命とSociety5.0			
		第7週 AIの歴史 第1次AIブーム,第2次AIブーム,第3次AIブーム			
		第8週 機械学習の方式(1) 第8週 ルールベースと機械学習,教師あり学習			
		第9週 機械学習の方式(2) 第9週 教師なし学習,半教師あり学習,強化学習,過学習と汎化			
		第10週 神経細胞と人工ニューロン ニューロンと人工ニューロン, バイアス, パーセプトロンとシグモイドニューロン			
		第11週 活性化関数(1) 線形と非線形,回帰と分類			
		第12週 活性化関数(2) 第二2週 ニューラルネットワークで利用される関数			
		第13週 ニューラルネットワーク (1) 第二日 ニューラルネットワークの構成,画像の識別方法			
		ニューラルネットワーク (2) 第14週 特徴量抽出,フィルタ,出力層での判断			
		置か込みニューラルネットワーク (1) 第15週 ディープラーニングの基本,畳み込み層,特徴量抽出,カーネル			
		畳み込みニューラルネットワーク(2) ブーリング層, 全結合層, 出力層			
		第17週 前期の復習 第17週 これまでのまとめ課題を実施			
_					

	第18週	ディープラーニングの基本的な仕組み 前期の内容を振り返りながらディープラーニングの基本的な仕組みを学びます
	第19週	畳み込みニューラルネットワーク (3) ディープラーニング、入力層から出力層までまとめ
	第20週	ディープラーニング(1) ディープラーニングの概念
	第21週	ディープラーニング(2) ディープラーニングに必要な数学(1)
	第22週	ディープラーニング(3) ディープラーニングに必要な数学(2)
	第23週	誤差逆伝搬(1) 出力側からの誤差を逆伝搬、誤差逆伝搬の骨子
	第24週	誤差逆伝搬(2) 誤差逆伝搬の初期説明,誤差逆伝搬の経過(第1回目)
	第25週	誤差逆伝搬(3) 重み変更分 (ΔW) と学習率,各ノードに於ける (重み変更分ΔW)
授業計画	第26週	ディープラーニングの実装の現状について(1) AIシステムの現状・開発について
	第27週	ディープラーニングの実装の現状について(2) AIシステムの現状・開発について(2)
	第28週	ディープラーニングの実装演習(1) AI顔認証システム(1)
	第29週	ディープラーニングの実装演習(2) AI顔認証システム(2)
	第30週	ディープラーニングの実装演習(3) AI顔認証システム(3)
	第31週	生成AI 生成AIの現状と利用方法
	第32週	データサイエンス 平均値,中央値,最頻値,分散,標準偏差
	第33週	Excelで機械学習アルゴリズム 活性化関数,回帰分析,人工ニューロン
	第34週	後期の復習 これまでのまとめ課題を実施